P	REVIOUS EXAMS QUESTION	IS		EXERCISE-I	
1.	A point object is placed at a distance of 10 cm and its real image is formed at a distance of 20 cm from a concave mirror. If the object is moved by	7.	For a plano convex lenx ($\mu = 1.5$) has radius of curvature 10 cm. It is silvered on its plane surface. Find focal length after silvering:- [AIPMT 2000]		
	0.1 cm towards the mirror, the image will shift by	hift by	(1) 10 cm	(2) 20 cm	
	about. [MP PMT 2000]		(3) 15 cm	(4) 25 cm	
	(1) 0.4 cm away from the mirror	8.	A tall man of height	6 feet. want to see his full	
	(2) 0.4 cm towards the mirror		image. Then required minimum length of the mirror		
	(3) 0.8 cm away from the mirror		willbe:-	[AIPMT 2000]	
	(4) 0.8 cm towards the mirror		(1) 12 fæt	(2) 3 fæt	
2.	A ray of light passes through an equilateral glass		(3) 6 fæt	(4) Any length	
	prism in such a manner that the angle of incidence is equal to the angle of emergence and each of these angles is equal to 3/4 of the angle of the prism. The angle of deviation is [MINR-1988, MP PMT 1999, Roorkee 2000, UPSEAT 2000]	9.	A bubble in glass sl one side appears at then thickness of slab (1) 3.75 cm	ab (µ = 1.5) when viewed from 5 cm and 2cm from other side, is:- [AIPMT 2000] (2) 3 cm	
	(1) 45° (2) 39° (3) 20° (4) 30°		(3) 10.5 cm.	(4) 2.5 cm	
3.	The focal length of a convex lens is 10 cm and its refractive index is 1.5. If the radius of curvature of one surface is 7.5 cm, the radius of curvature of the second surface will be [MP PMT 2000]	10.	A film projector magn centimeter on screen then area of magnifi (1) 1600 sq.cm	ifies a film of area 100 square . If linear magnification is 4 .ed image on screen will be - [CPMT 2001] (2) 800 sq.cm	
	(1) 7.5 cm (2) 15.0 cm (3) 75 cm (4) 5.0 cm		(3) 400 sq.am	(4) 200 sq.am	
4.	 The focal lengths of the objective and eye-piece of a telescope are respectively 100 cm and 2 cm. The moon subtends an angle of 0.5° at the eye. If it is looked through the telescope, the angle subtended by the moon's image will be (1) 100° 		A ray of light travel frequency n, velocity enters into water tha v' and I' respectively following- (1) $\lambda = \lambda$ '	ling in air have wavelength λ , γ V and intensity I. If this ray n these parameters are λ ', n', γ . Which relation is correct from [CPMT 2001] (2) n=n'	
	(3) 25° (4) 10°		(3) v=v'	(4) I=I'	
 5. A man cannot see clearly the objects beyond a distance of 20 cm from his eyes. To see distant objects clearly he must use which kind of lenses and of what focal length [MP PMT 2000] (1) 10 cm concave (2) 100 cm concave 		Optical fibre are based on -[CPMT 2001(1) Total internal reflection(2) Less scattering(3) Refraction(4) Less absorption coefficient			
	(3) 20 cm convex	13.	A man is 180 cm tall	and his eyes are 10 cm below	
6.	 (4) 20 cm concave Rainbow is formed due to :- [AIPMT 2000] (1) Scattering & refraction 		the top of his head. If right from toe to head at a distance of 1 m of the plane mirror m	n order to see his entire height nd, he uses a plane mirror kept n from him.The minimum length equired is	
			- [M	P PMT 1993, Delhi PMT 2001]	
	(2) TOTAL INTERNAL REFLECTION & DISPERSION		(1) 180 cm	(2) 90 cm	
	(3) Reflection only		(3) 85 cm	(4) 170 cm	
	(4) Diffraction and dispersion				

14.	The focal length of a contractive will be	nvex mirror is 20 cm its	21.	Relation between cr	itical angles of water and glass
	(1) 10 cm	(2) 20 cm		- (1) C>C	(2) C < C
	(3) 30 cm	(4) 40 cm		(3) $C_{w} = C_{q}$	(4) $C_w = C_q = 0$
15.	Light travels through a c and having refractive inde	plass plate of thickness t x n. If c is the velocity of	22.	A plano convex ler 1.6. The radius of is 60 cm. The focal	as is made of refractive index curvature of the curved surface length of the lens is
	this thickness of glass is	[NCERT 1976, MP PET-		[AIPMT	1999; Pb.PMT 1999; BHU 2001]
	1994, AIPMT 1996, CET	Karnataka 1994, MP PMT		(1) 50 cm	(2) 100 cm
	1999, 2001]			(3) 200 cm	(4) 400 cm
	(1) $\frac{t}{nc}$	(2) trc	23.	A disc is placed o	on a surface of pond which has
	nt	te		refractive index $\frac{3}{3}$. A source of light is placed 4 m
	(3) $\frac{\mathrm{fit}}{\mathrm{c}}$	(4) $\frac{n}{n}$		below the surface of disc will be so lic	of liquid. The minimum radius of
16.	A ray of light propagates f	romglass (refractive index			
	= 3/2) to water (refracti	we index = $4/3$). The value		(1) ∞	(2) 3m.
	of the critical angle	[JIPMER 1999, MP PMT		(3) 6m.	(4) 4m.
	2000,2003 UPSEAT 2001]		24.	If in a plano-convex	a lens. the radius of curvature of
		$\left(\sqrt{8}\right)$		the convex surface	is 10 cm and the focal length of
	(1) $\sin^{-1}(1/2)$	(2) $\sin^{-1}\left(\frac{9}{9}\right)$		the lens is 30 cm, t	then the refractive index of the
	(3) sin ⁻¹ (8/9)	(4) sin ⁻¹ (5/7)		material of lens	s will be[CPMT 1986, MLNR-1988, PMT 2002]
17.	Three prisms 1.2 and	3 have the prism angle		(1) 1.5	(2) 1.66
	$A = 60^\circ$, but their refraction	ve indices are respectively		(3) 1.33	(4) 3
	1.4, 1.5 and 1.6. If δ_1 , δ_2 , δ_3 , be their respective		25.	A diminished virtu	al image can be formed only in
	angles of deviation then	[MP PMT 2001]		(1) Plane mirror	[MP PMT 2002]
	(1) $\delta_3 > \delta_2 > \delta_1$	(2) $\delta_1 > \delta_2 > \delta_3$		(2) A concave mirro	or
	(3) $\delta_1 = \delta_2 = \delta_3$	(4) $\delta_2 > \delta_1 > \delta_2$		(3) A convex mirro	r
	1 2 3	2 1 3		(4) Concave-parabo	olicmirror
18.	In a laboratory four conv of focal lengths 2,4,6 a	vex lenses L_1 , L_2 , L_3 , and L_4 and 8 cm respectively are	26.	Critical angle of 1: minimum for	ight passing from glass to air is
	available. Two of these l	enses form a telescope of		[NCERT 19	75, RPMT-1999, MP PMT 2002]
	chiective and we longer	nilying power 4. The		(1) Red	(2) Green
				(3) Yellow	(4) Violet
	(1) \underline{L}_2 , \underline{L}_3		27.	Which of the followi	ng is used in optical fibres
	(3) L ₃ , L ₂	(4) L_4 , L_1		(1) Total internal re	flection [AIEEE 2002]
19.	To remove myopia (short	sightedness) a lens of		(2) Scattering	
	power 0.66D is required.	The distant point of the		(3) Diffraction	
	eye is approximately	[MP PMT 2001]		(4) Refraction	
	(1) 100 cm	(2) 151.5 cm	28.	A point source of	light is place 4 m below the
	(3) 50 cm	(4) 25 cm		surface of water	of refractive index 5/3. The
20	The magnifying power of .	a simple microscope is 6		minimum diameter o	f a disc which should be placed
20.	The focal length of its leng	s in metres will be, if least		over the source on	the surface of water to cut-off
	distance of distinct visio	n is 25 cm		all light coming ou	t of water is (μ = 5/3)
	(1) 0.05	(2) 0.06 [mp pmt 2001]		-	[AIPMT 1994; JIPMER 2001,02]
	(3) 0.25	(4) 0.12		(1) 2 m	(2) 6 m
				(2) 4 m	(4) 2 m
				(3) 4 M	(4) 3 M
48			1		

Pre-Medical

If a convex lens of focal length 80 cm and a concave 29. lens of focal length 50 cm are combined together, what will be their resulting power

[AIPMT 1996; AFMC 2002]

(1) + 6.5 D	(2) - 6.5 D
(3) + 7.5 D	(4) - 0.75 D

For the given incident ray as shown in figure, the 30. condition of total internal refraction of this ray the minimum refractive index of prism will be :-

- A bulb is located on a wall. Its image is to be 31. obtained on a parallel wall with the help of convex lens. If the distance between parallel walls is 'd' then required focal length of lens placed in between the walls is :-[AIPMT 2002]
 - (1) Only $\frac{d}{4}$
 - (2) Only $\frac{d}{2}$
 - (3) More than $\frac{d}{4}$ but less than $\frac{d}{2}$

(4) Less than or equal to $\frac{d}{4}$

Brilliance of diamond is due to 32.

> (1) Shape [AIIMS 2002, MP PMT 2003]

- (2) Outting
- (3) Reflection
- (4) Total internal reflection
- Two plane mirrors are at 45° to each other. If an 33. object is placed between them then the number of images will be [MP PMT 2003] (1) 5 (2) 9 (3) 7 (4) 8

34. An astronomical telescope has a magnifying power 10. The focal length of eyepiece is 20 cm. The focal length of objective is [MP PMT 2002,2003]

(1)

(3)
$$\frac{1}{2}$$
 cm (4) $\frac{1}{200}$ cm

- 35. A person can not see the objects clearly placed at a distance more than 40 cm. He is advised to use a lense of power [MP PMT 2002,2003]
 - (1) 2.5 D(2) + 2.5 D
 - (3) 6.25 D (4) + 1.5 D
- 36. 'Mirage' is a phenomenon due to [AIIMS-1998; MP PET 2002; AFMC 2003]
 - (1) Relfection of light
 - (2) Reflraction of light
 - (3) Total internal reflection of light
 - (4) Diffraction of light
- 37. In the formation of a rainbow light from the sun on water droplets undergoes

[AIPMT 2000; Orissa JEE 2002; MP PET 2003]

- (1) Dispersion only
- (2) Only total internal reflection
- (3) Dispersion and total internal reflection
- (4) None of these
- 38. A convex lens is dipped in a liquid whose refractive index is equal to the refractive index of the lens. Then its focal length will :-[AIPMT 2003]
 - (1) Become zero
 - (2) Become infinite
 - (3) Become small, but non-zero
 - (4) Remain unchanged
- 39. An equiconvex lens is cut into two halves along (i) XOX' and (ii) YOY' as shown in the figure. Let f, f', f"be the focal lengths of the complete lens, of each half in case (i), and of each half in case (ii), respectively Choose the correct statement from the following :-[AIPMT 2003]

(1)
$$f' = f$$
, $f'' = 2f$
(2) $f' = 2f$, $f'' = f$
(3) $f' = f$, $f'' = f$
(4) $f' = 2f$, $f'' = 2f$

NODE2 \E:\DATA\ 2014\SMP\PHY\SET-03\01-RAY-OPTIC\ENG\03-RAY-X.P65

- 40. An object is immersed in a fluid. In order that the object becomes invisible, it should. [AIIMS 2004]
 - () Bahave as a perfect reflector
 - Ø Absorb all light falling on it
 - () Have refractive index one
 - () Have refractive index exactly matching with that of the surrounding fluid
- 41. A beam of light composed of red and green rays is incident obliquely at a point on the face of a rectangular glass slab. When coming out on the opposite parallel face, the red and green rays emerge from :- [AIPMT 2004]
 - () Two points propagating in two different parallel directions
 - Ø One point propagating in two different directions
 - $\boldsymbol{\vartheta}$ One point propagating in the same direction
 - () Two points propagating in two different non parallel directions
- 42. The refractive index of the material of a prism is $\sqrt{2}$ and its refracting angle is 30°. One of the refracting surfaces of the prism is made a mirror inwards. A beam of monochromatic light entering the prism from the other face will retrace its path after reflection from the mirrored surface if its angle of incidence on the prism is :- [AIPMT 2004] (1) 60° (2) 0°
 - (3) 30° (4) 45°
- 43. A telescope has an objective lens of 10 cm. diameter and is situated at a distance of one kilometer from two objects. The minimum distance between these two objects, which can be resolved by the telescope, when the mean wavelength of light is 5000 Å, is of the order of :- [AIPMT 2004]
 - (1) 5 m. (2) 5 mm.

(3) 5 cm. (4) 0.5 m.

44. A telescope has an objective lens of focal length 200 cm and an eye piece with focal length 2cm. If this telescope is used to see a 50 meter tall building at a distance of 2km, what is the height of the image of the building formed by the objective lens

(1)	5 cm	(2)	10 cm [AIIMS 2005]
(3)	1 cm	(4)	2 cm

(1)
$$\sin^{-1}(n_2/n_1)$$

(2)
$$\sin^{-1}\sqrt{n_1^2-n_2^2}$$

(3)
$$\int \int \frac{n_2}{n_1} \int \frac{n_2}{n_2} \int \frac{n_2}$$

(4) n_{1}^{-1}

- (1) Increases to a factor of 1.25
- (2) Increases to a factor of 2.5
- (3) Increases to a factor of 1.2
- (4) Decreases to a factor of 1.2
- 47. A microscope is focussed on a mark on a piece of paper and then a slab of glass of thickness 3 cm and refractive index 1.5 is placed over the mark. How should the microscope be moved to get the mark in focus again :- [AIPMT 2006]
 - (1) 1 cm upward
 - (2) 4.5 cm downward
 - (3) 1 cm downward
 - (4) 2 cm upward
- 48. A convex lens and a concave lens, each having same focal length of 25 cm, are put in contact to form a combination of lenses. The power in diopters of the combination is :- [AIPMT 2006]
 - (1) 25 (2) 50 (3) Infinite (4) Zero
- **49.** The frequency of a light wave in a material is 2×10^{14} Hz and wavelength is 5000 Å. The refractive index of material will be : [AIEMT 2007]
 - (1) 1.33
 (2) 1.40

 (3) 1.50
 (4) 3.00

50. A small coin is resting on the bottom of a beaker filled with a liquid. A ray of light from the coin travels upto the surface of the liquid and moves along its surface (see figure). [AIPMT 2007]

_ ⊾ 3 cm →	
<u>1</u>	
5	
Com	

How fast is the light travelling in the liquid?

(1)	$1.2 \times 10^8 \text{ m/s}$	(2) $1.8 \times 10^8 \text{ m/s}$
(3)	$2.4 \times 10^{8} \text{m/s}$	(4) 3.0×10^8 m/s

51. Two thin lenses of focal lengths f_1 and f_2 are in contact and coaxial. The power of the combination is:-

[AIPMT 2008]

- **52.** A lens having focal length f and aperture of diameter d forms an image of intensity I. Aperture of diameter
 - $\frac{d}{2}$ in central region of lens is covered by a black

paper. Focal length of lens and intensity of image now will be respectively :- [AIPMT 2010]

- (1) $\frac{f}{2}$ and $\frac{I}{2}$ (2) f and $\frac{I}{4}$ (3) $\frac{3f}{4}$ and $\frac{I}{2}$ (4) f and $\frac{3I}{4}$
- 53. A ray of light travelling in a transparent medium of refractive index μ , falls on a surface separating the medium from air at an angle of incidence of 45°. For which of the following value of μ the ray can undergo total internal reflection? [AIPMT 2010] (1) $\mu = 1.25$ (2) $\mu = 1.33$ (3) $\mu = 1.40$ (4) $\mu = 1.50$

- 54. The speed of light in media M_1 and M_2 is 1.5×10^8 m/s and 2.0×10^8 m/s respectively. A ray of light enters from medium M_1 to M_2 at an incidence angle i. If the ray suffers total internal reflection, the value of is:- [AIPMT 2010]
 - (1) Equal to or less than $\sin^{-1}\left(\frac{3}{5}\right)$

(2) Equal to or greater than
$$\sin^{-1}\left(\frac{3}{4}\right)$$

- (3) Less than $\sin^{-1}\left(\frac{2}{3}\right)$ (4) Equal to $\sin^{-1}\left(\frac{2}{3}\right)$
- 55. A ray of light is incident on a 60° prism at the minimum deviation position. The angle of refraction at the first face (i.e., incident face) of the prism is:(1) 30° (2) 45° [AIPMT 2010]
 (3) 60° (4) Zero
- 56. The near point is 100 cm for a man. To see the distant object clearly, what is the power of required lens? [AIIMS 2010]

(1)
$$-1D$$
 (2) $+1D$
(3) $-3D$ (4) $+3D$

- 57. Achromatic combination of lenses comprises of the two lenses of same material placed 4cm apart. If focal length of one lens is 5cm, the focal length of other lens is : [AIIMS 2010]
 - (1) 2cm
 (2) 4cm

 (3) 6cm
 (4) 3cm
- 58. Which of the following is not due to total internal reflection? [AIPMT(Pre) 2011]
 - (1) Working of optical fibre
 - (2) Difference between apparent and real depth of a pond
 - (3) Mirage on hot summer days

(4) Brilliance of diamond

59. A biconvex lens has a radius of curvature of magnitude 20 cm. Which one of the following options describe best the image formed of an object of height 2 cm placed 30 cm from the lens ?

[AIPMT(Pre) 2011]

- (1) Virtual, upright, height = 1cm
- (2) Virtual, upright, height = 0.5cm
- (3) Real, inverted, height = 4cm
- (4) Real, inverted, height = 1cm

NODE2 \E:\DATA\2014\SMP\PHY\SET-03\01-RAY-OPTIC\ENG\03-RAY-X.P65

Ε

A thin prism of angle 15° made of glass of refractive A concave mirror of focal length 'f₁' is placed at a 66. index $\mu_1 = 1.5$ is combined with another prism of distance of 'd' from a convex lens of focal length f_2' . glass of refractive index $\mu_2 = 1.75$. The combination A beam of light coming from infinity and falling on of the prisms produces dispersion without deviation. this convex lens-concave mirror combination returns The angle of the second prism should be :to infinity. The distance 'd' must equal : [AIPMT(Mains) 2011] (1) 5° (2) 7° [AIPMT(Pre) 2012] (4) 12° (3) 10° (1) $2f_1 + f_2$ (2) $-2f_1 + f_2$ A converging beam of rays is incident on a diverging (3) $f_1 + f_2$ (4) $-f_1 + f_2$ lens. Having passed through the lens the rays 67. When a biconvex lens of glass having refractive intersect at a point 15 cm from the lens on the opposite side. If the lens is removed the point where index 1.47 is dipped in a liquid, it acts as a plane the rays meet will move 5 cm closer to the lens. The sheet of glass. This implies that the liquid must have focal length of the lens is :- [AIPMT (Mains) 2011] refractive index. [AIPMT(Pre) 2012] (1) 5 cm (1) greater than that of glass (2) -10 cm (3) 20 cm (2) less than that of glass (4) -30 cm (3) equal to that of glass Two lens of focal length -20cm and +10cm are put in combination, find the power of the combination: (4) less than one [AIIMS 2011] 68. A rod of length 10 cm lies along the principal axis (1) -1D (2) -2D of a concave mirror of focal length 10 cm in such (3) +5D (4) +2D a way that its end closer to the pole is 20 cm away A far sighted person has his near point 50cm, find from the mirror. The length of the image is :the power of lens he should use to see at 25cm, [AIPMT(Mains) 2012] clearly: [AIIMS 2011] (1) 2.5 cm (2) 5 cm (1) +1 (2) +2 (3) 10 cm (4) 15 cm (3) -2 (4) -1D The magnifying power of a telescope is 9. When 69. For the angle of minimum deviation of a prism to be equal to its refracting angle, the prism must be it is adjusted for parallel rays the distance between made of a material whose refractive index :the objective and eyepiece is 20 cm. The focal (1) is less than 1 [AIPMT(Mains) 2012] length of lenses are : [AIPMT(Pre) 2012] (2) is greater than 2 (3) lies between $\sqrt{2}$ and 1 (1) 18 cm, 2 cm (2) 11 cm, 9 cm (4) lies between 2 and $\sqrt{2}$ (3) 10 cm, 10 cm (4) 15 cm, 5 cm 70. distance between an object and its real image must A ray of light is incident at an angle of incidence, be :-[AIIMS 2012] i, on one face of a prism of angle A (assumed to (1) 3F (2) 4F be small) and emerges normally from the opposite (3) $\frac{3}{2}$ F (4) 2F face. If the refractive index of the prism is μ , the angle of incidence i, is nearly equal to : 71. A light ray is incident on a glass slab, it is partially reflected and partially transmitted. Then the [AIPMT(Pre) 2012] reflected ray is :-[AIIMS 2012] (1) A/μ (2) A/2µ (1) Completly polarised and highly intense (2) Partially polarised and poorly intense (4) $\frac{\mu A}{2}$ (3) µA (3) Partially polarised and highly intense

(4) Completly polarised and poorly intense

Pre-Medical

60.

61.

62.

63.

64.

65.

-RAY-OPTIC\ENG\03-RAY-PHY\SET-03\01 NODE2 \E:\DATA\2014 \SMP Ε

BRAIN TEASERS EXERCISE-II 1. The focal length of a concave mirror is 50 cm. where 9. A person can see clearly only upto a distance of 25 an object be placed so that its image is two times cm. He wants to read a book placed at a distance magnified, real and inverted of 50 cm. What kind of lens does he require for his (1) 75 cm (2) 72 cm spectacles and what must be its power ? (3) 63 cm (4) 50 cm (1) Concave, -1.0 D (2) Convex, +1.5 D (3) Concave, - 2.0 D (4) Convex, + 2.0 D 2. An object of height 7.5 cm is placed in front of a convex mirror of radius of curvature 25 cm at a 10. Two convex lens of focal length 20 cm and 25 cm distance of 40 cm. The height of the image should are placed in contact with each other, then power beof this combination is -(1) 2.3 cm (2) 1.78 cm (1) + 1 D (2) + 9 D (3) - 1 D (4) - 9 D (3) 1 cm (4) 0.8 cm 11. A person can not see the objects beyond 50 cm. A square of side 3 cm is placed at a distance of 25 3. The power of a lens to correct this vision will becm from a concave mirror of focal length 10 cm. The centre of the square is at the axis of the mirror (1) +2D (2) -2D (3) +5D (4) 0.5 D and the plane is normal to the axis. The area 12. The focal length of convex lens is 2.5 cm. Its magenclosed by the image of the wire is nifying power for minimum distance of distinct (1) 4 cm^2 (2) 6 cm^2 visionwill be -(4) 36 cm² (3) 16 cm^2 (1) 25 (2) 52 (3) 11 (4) 1.1 4. The focal length of a concave mirror is 12 cm. Where should an object of length 4 cm be placed, 13. Two lenses of power +2.50 D and -3.75 D are so that a real image of 1 cm length is formed? combined to form a compound lens. Its focal length (2) 3 cm in an will be -(1) 48 cm (3) 60 cm (4) 15 cm (1) 40 (2) -40 (3) -80 (4) 160 Minimum and maximum distance should be for clear 5. 14. An object is lying at a distance of 90 cm from a vision of healthy eye concave mirror of focal length 30 cm. The position (1) 100cm & 500 cm (2) Infinite & 25 cm and nature of image formed by it will be (3) 25cm & 100 cm (4) 25 cm & infinite (1) 45 cm, of the size of object (2) 90 cm, smaller than object 6. The angle of a glass prism is 4.5° and its refractive index is 1.52. The angle of minimum deviation will (3) 30 cm, bigger than object be – (4) -45 cm of the smaller the object (1) 1.5° (2) 2.3° An object of height 1.5 cm is situated at a distance 15. (3) 4.5° (4) 2° of 15 cm from a concave mirror. The concave mir-7. The wavelength of light in two liquids 'x' and 'y' is ror forms its real image of height 3.0 cm. The focal 3500 Å and 7000Å, then the critical angle will be length of concave mirror will be (1) 60° (2) 45° (1) - 10 cm (2) - 20 cm (3) 30° (4) 15° (3) 20 cm (4) 30 cm 8. A microscope is focused on a mark, then a glass A myopic person can not see objects lying beyond 16. slab of refractive index 1.5 and thickness of 6 cm is 2 m. The focal length and power of the lens replaced on the mark to get the mark again in focus, quired to remove this defect will be the microscope should be moved (1) 1 m & 0.5 D (2) - 2m & - 0.5 D (1) 4 cm (2) 2 cm

(3) 0.5 m & 0.5 D

NODE2\E:\DATA\2014\SMP\PHY\SET-03\01-RAY-OPTIC\ENG\03-RAY-X.P65

(3) 6 cm

(4) 8 cm

53

(4) - 0.5 m & 0.5 D

17.	An astronomical telescope of magnifying power 8 27. Focal length of convex lens is				ns is f. If thi	s f. If this lens is cut	
	is made using two lenses spaced 45 cm apart. The		along parallel to its length in			in two equal parts then	
	focal length of the lenses used are		focal length	of its half pa	rt will be:		
	(1) $F = 40 \text{ cm}$, $f = 5 \text{ cm}$ (2) $F = 8 \text{ cm}$, $f = 5 \text{ cm}$				3f		
	(3) $F = 5 \text{ cm}$, $f = 47 \text{ cm}$ (4) $F = 20 \text{ cm}$, $f = 5 \text{ cm}$		(1) f/2	Øf	(3) $\frac{31}{2}$	(4)2£	
18.	The magnifying power of the objective of a com-				2		
	pound microscope is 7 if the magnifying power of	28.	An equiconv	ex lens has a p	ower of 5 diq	tre. If it is	
	the microscope is 35, then the magnifying power		made of gla	ss of refract:	ive index 1.5.	. then radius	
	of eyepiece will be -		of curvature	e of its each s	surface will be	e?	
	(1) 245 (2) 5 (3) 28 (4) 42		(1) 20cm	(2) 10cm	(3) 40cm	(4) ∞	
19.	When a ray of light is incident normally on a plane						
	mirror then the angle of reflection will be	29.	A ray is inc	ident at 30° a	angle on plane	mirror.What	
	(1) 0° (2) 90° (3) 180° (4) -90°		will be devi	ation after re	flection from:	mirror.	
20.	An object is situated at a distance of 15 cm from a		(1) 120°	(2) 60°	(3) 30°	(4) 45°	
	convex mirror of focal length 30 cm. The position	30	Two nlane m	irmrs are lv	ina remendia	ular to each	
	of the image formed by it will be-		other, ther	re is lamp in l	between mirro	ors. Then No.	
	(1) - 5 cm $(2) 10 cm$ $(3) - 10 cm$ $(4) + 5 cm$		of images of lamp will be				
21.	Lenses of powers 3D and -5D are combined to		(1) 3	(2) /	(3) 5	(1) 6	
	from a compound lens. An object 1s placed at a		(1) 5	(2) 1	(5) 5	(-)	
	distance of 50 cm from this lens. Calculate the	31.	An object placed at a distance of 9cm from first				
	position of its image. (1) 10 sm (2) 25 sm (4) 10 sm		principal :	focus of conv	æx lens, pro	duces a real	
~~	(1) $-10dii$ (2) $+10dii$ (3) $-25dii$ (4) $+25dii$.		image at a distance of 25cm from its second				
ZZ .	first principal focus of a control long produces a		principal fo	cus. Then foc	al length of l	ens is	
	mal image at a distance of 25cm from its accord		(1) 9cm	(2) 25cm	(3) 15cm	(4) 17cm	
	rear may at a distance of 2001. From its second	32	Aravofli	aht nasses ti	hrough equils	toral Prism	
	(1) 9 cm (2) 25 cm (3) 15 cm (4) 17 cm		$(\mu = 1.5)$ s	ich that angle	of incidence	e is equal to	
23	A convex lens of Focal length of 40 m is in contact		angle of em	ergence and t	he later is eq	$x_{\text{mal}} = \frac{10}{2} \frac{10}{$	
23.	with a concave lens of focal length 25cm. The power		of Prisman	gle. The angle	of deviation	is	
	of the combination is		(1) 60°	(2) 30°	(3) 45°	(4) 120°	
	(1) -1.5 diaptress (2) -6.5 diaptress		(1) 00	(2) 30	(0) 10	(1) 120	
	$(3) +6.5 \text{ diaptress} \qquad (4) +6.67 \text{ diaptress}$	33.	Prismangle	of glass prism:	is 10°. It's ref	fractive index	
24.	An object is put at a distance of 5 cm from the first		of red and violet colour is 1.51 ar				
	focus of a convex lens of focal length 10cm.If a		respectivel	y. Then its di	spersive power	rwillbe.	
	real image is formed. Its distance from the lens will		(1) 0.015		(2) 0.020		
	be:		(3) 0.011		(4) 0.019		
	(1) 15cm (2) 20cm (3) 25cm (4) 30cm					- 1 1 6	
25.	Lenses applied in achromatic combination having	34.	Refractive	index of viole	et, yellow and I	Red colour of	
	dispersive power in ratio of 5:3 if focal length of		monortize	allaceriai or	col longth of	1.04×1.02	
	concave lens is 15cm Then focal length of other		Then chrom	tic abberati	ion hetween t	he colour of	
	lens will be :		violet and r	edwill be		IC COLOUL OF	
	(1) -9cm (2) +9cm (3) -12cm (4)+12 cm		(1) 0 (2) 5 -		()) 0 105		
26.	A telescope consisting of objective of focal length		(1) 0.6250	[[]	(2) 0.125		
	60cm and a single lens eye piece of focal length		(3) .02cm		(4) Ocm		
	5cm is focussed at a distant object in such a way	35.	An astronom	ical telesco	e has focal l	enoths 100 &	
	that parallel rays emerge from the eye piece. If the		10cm of obj	ective and ey	vepiece lens 1	respectively	
	object subtends an angle of 2° at the objective, then		when final	image is for	med at least	distance of	
	angular width of image will be.		distinct vis	sion, magnifica	tion power of t	elescope will	
	(1) 10° (2) 24°		be –				
	(3) 50° (4) 1/6°		(1) 10	(2) –11	(3) 14	(4) 15	

NODE2 \E:\DATA\2014\SMP\PHY\SET-03\01-RAY-OPTIC\ENG\03-RAY-X.P65

Ε

ths will		bottom of a beaker. The microscope is now raised up by 1 cm. To what depth should the water be poured into the beaker so that coin is again in the focus (Refractive index of water is 4/3)				
		(1) 1 cm		(2) $\frac{4}{3}$ cm		
exw.r.t.		(3) 3 cm		(4) 4 cm		
quid the ³ m/Sec.	43.	A boy stands straight infront of a mirror at a distance of 30 cm away from it. He sees his erect image whose height is 1/5th of his real height. The mirror he is using is -				
		(1) Planem	irror	(2) Convex	mirror	
		(3) Concave	emirror	(4) Plano-co	oncave mirror	
bject is urvature e mirror	44.	If tube length of astronomical telescope is 105 cm and magnifying power is 20 for normal setting. Calculate the focal length of objective.				
		(1) 100 cm	L	(2) 10 cm		
		(3) 20 cm		(4) 25 cm		
d,yellow 11.5318 1.6434, nen the	45.	A point source of light is place 4 m below the surface of water of refractive index 5/3. The minimum diameter of a disc which should be placed over the source on the surface of water to cut-off all light coming out of water is (μ = 5/3)				
ass are		(1) 2 m	(2) 6 m	(3) 4 m	(4) 3 m	
molass	46.	If an object mirror of f (1) Diminish (2) Enlarged (3) Diminish (4) Enlarged	t is placed 10 focal length 20 hed, upright, v d, upright, virt hed, inverted, d, upright, rea) cm in front) cm, the imag irtual tual real il	of a concave ge will be	
another <i>r</i> e index ion. The	47.	Least distance of distinct vision is 25 cm, What will be Magnifying power of simple microscope of focal length 5 cm, if final image is formed at minimum distance of distinct vision -				
		(1) $\frac{1}{5}$	(2) 5	(3) $\frac{1}{6}$	(4) 6	
d with a 60°. The	48.	Angle of product rays first surfactor suffer Refractive (1) $2 \sin A$ (3) $\frac{1}{2} \cos A$	ism is A and it falling at an ace return ba ring reflection index of the m	s one surface angle of inc ck through th at second silv aterial of pri (2) 2 cos A (4) tanA	is silvered. idence 2A on he same path ered surface. Ism is	

36. If the magnitude of dispersive powers of two lenses 42. A microscope is focussed on a coin lying at the are 0.024 and 0.036. Then their focal length be for abberation free combination. (1) 30 cm, -40 cm (2) 30 cm, -45 cm (3) 10 cm, 30 cm (4) 20 cm, -35 cm Velocity of light in glass, whose refractive inde 37. air is 1.5, is 2x10° m/Sec. In a certain lie velocity of light is found to be 2.5×10^{6} The refractive index of liquid w.r.t. air is

(1) 0.64	(2) 0.80
(3) 1.20	(4) 1.44

38. A virtual image three times the size of the d obtained with a concave mirror of radius of a 36 cm. The distance of the object from the is-

(1)	5 cm	(2)	12	cm
(3)	10 cm	(4)	20	cm

- 39. If the refractive indices of crown glass for rec and violet colours are 1.5140, 1.5170 and respectively and for flint glass these are 1.6499 and 1.6852 respectively, th dispersive powers for crown and flint gl respectively.
 - (1) 0.034 and 0.064
 - (2) 0.064 and 0.034
 - (3) 1.00 and 0.064
 - (4) 0.034 and 1.0
- 40. A thin Prism P, with angle 4° and made from of refractive index 1.54 is combined with thin Prism P_ made from glass of refractiv 1.72 to produce dispersion without deviation angle of Prism P, is

(1) 5.33°	(2) 4°
(3) 3°	(4) 2.6

41. The angle of minimum deviation measured prism is 30° and the angle of prism is 6 refractive index of prism material is -

(1)	$\sqrt{2}$		(2) 2
-----	------------	--	-------

(4) $\frac{4}{3}$ (3) $\frac{3}{2}$

NODE2 \E:\DATA\ 2014\SMP\PHY\SET-03\01-RAY-OPTIC\ENG\03-RAY-X.P65 Ε

- 49. A point object is moving on the principal axis of a concave mirror of focal length 24 cm towards the mirror. When it is at a distance of 60 cm from the mirror, its velocity is 9 cm/sec. What is the velocity of the image at that instant -
 - (1) 5 cm/sec.
 - (2) 12 cm/sec
 - (3) 4 cm/sec
 - (4) 9 cm/sec
- 50. A glass prism (μ = 1.5) is dipped in water (μ = 4/3) as shown in figure. A light ray is incident normally on the surface AB. It reaches the surface BC after totally reflected, if
 - (1) $\sin \theta > 8/9$
 - (2) $2/3 < \sin \theta < 8/9$
 - (3) $\sin\theta < 2/3$
 - (4) It is not possible

51. A concave mirror gives an image three times as large as the object placed at a distance of 20 cm from it. For the image to be real, the focal length should be -

(1) -10 cm	(2) -15 cm
(3) -20 cm	(4) -30 cm

52. The minimum distance between the object and its real image for concave mirror is

- (1) f (2) 2f
- (3) 4*f* (4) Zero
- 53. A ray of light is incident at an angle i from denser to rare medium. The reflected and the refracted rays are mutually perpendicular. The angle of reflection and the angle of refraction are respectively r and r'. then the critical angle will be

(1) sin⁻¹ (sin r)
 (2) sin⁻¹ (tan r')
 (3) sin⁻¹ (tan i)
 (4) tan⁻¹ (sin i)

TARGET AIIMS

EXERCISE-III

	Directions for Assertic	on & Reason questions								
	These questions consist of two statements each these Questions you are required to choose any	h, printed as Assertion and Reason. While answering yone of the following four responses.								
A	If both Assertion & Reason are True & the Reas	son is a correct explanation of the Assertion.								
B.	If both Assertion & Reason are True but Reason	n is not a correct explanation of the Assertion.								
C.	If Assertion is True but the Reason is False.									
D.	If both Assertion & Reason are false.									
1.	Assertion : A convex mirror is used as a driver's mirror Reason : Because convex mirror's field of view is large and images formed are virtual, erect and diminished.	 6. Assertion : As the temperature of a medium increases the refractive index decreases Reason : When a ray travels from vacuum to a medium, then μ is known as absolute refractive index of the medium (1) A (2) B (3) C (4) D 7. Assertion : Critical angle is minimum for violet 								
0		colair								
2.	Assertion : In VISIOLE light $\mu_r < \mu_v$ Reason : This follows from cauchy's formula	Reason : Because critical angle $\theta_c = \sin^{-1}\left(\frac{1}{\mu}\right)$ and								
3.	$\mu = A + \frac{B}{\lambda^2} + \frac{C}{\lambda^4}$ (1) A (2) B (3) C (4) D Assertion: Refractive index of material of a prism depends on angle of prism A and angle of minimum depends on angle of prism A and angle of minimum	$\mu \propto \frac{1}{\lambda}$ (1) A (2) B (3) C (4) D 8. Assertion: For given system ($\theta = 72^{\circ}$), number of images formed is 4 when object is placed symmetrically. Reason: A plane mirror always form a virtual								
	Reason : Because $\mu = \frac{\sin\left(\frac{A + \delta_m}{2}\right)}{\sin A / 4}$ (1) A (2) B (3) C (4) D	 (1) A (2) B (3) C (4) D 9. Assertion : The power of a converging lens is positive and that of a diverging lens is negative 								
4.	Assertion : Two convex lenses joined together									
	produce an achromatic combination	Reason: Because P = - f								
IC\ENG\03-RAY-X.P65	Reason : The condition for achromatism is $\frac{\omega_1}{f_1}$ + $\frac{\omega_2}{f_2}$ = 0 where symbols have their usual meaning	 10. Assertion :- We can decide the nature of a mirror by observing the size of erect image in the mirror (see figure) 								
\E:\DATA\2014\\$MP\'PHY\SET-03\01-RAY-OPT •	Assertion: When the object moves with a velocity \vec{v} , its image in the plane mirror moves with a velocity of $-5\vec{v}$. With respect to the object. Reason: The minimum height of the mirror to be required to see the full image of man of height h is $\frac{h}{5}$	$\begin{array}{c} \hline \\ \hline $								
NODEZ	(1) A (2) B (3) C (4) D	(1) A (2) B (3) C (4) D								
E		57								

57

11.	Assertion : to another,	— As light t the speed of	ravels from light chang	n one medium je.	18.	Assertion :- Chromatic aberration occur in simplenses but not in mirrors.	ple					
	Reason :- S _F so it will ch	peed is the c ange.	haracterist	ic of medium		Reason : - Focal length varies with wavelength case of lenses and not in mirrors.	in					
	(1) A	(2) B	(3) C	(4) D	19.	Assertion : In a compound microscope, t	he					
12.	Assertion :	- Refractiv	e index n =	$\sqrt{\in_{\pi} \mu_{\pi}}$		intermediate image is real, inverted and magnific Basern · In every special ist prescribes spectaci	ed.					
				V r r		having a combination of convex le	ns					
	Boogon - Ve	logitu of li	abt in man	1		(f = +40 cm) in contact with a concave le	ens					
		elocity of 11	giit III vacut	$\lim C = \sqrt{\epsilon_0} \mu_0$		(f = -25 cm). The power of this lens combination is $-1.5D$	ion					
	and velocity	of light in m	edium v= <u> </u>	=		(1) A (2) B (3) C (4) D						
			$\sqrt{\in}$	μ	20.	Assertion :- 11 english alphabets donot sh lateral inversion.	10W					
	\rightarrow $\frac{c}{c}$	$= \underbrace{ \left[\in \mu \right]}_{}$				Reason :- If some portion of a mirror is covere	ed,					
	\Rightarrow n = v	$\sqrt{1} \in \mathcal{L}_0 \mu_0 \sqrt{1} \in \mathcal{L}_0$	$_{r} \mu_{r} \cdot$			the intensity of image will increase. (1) λ (2) B (3) C (4) D						
	(1) A	(2) B	(3) C	(4) D	21.	Assertion :- Sky appears blue.						
13.	Assertion :-	Astarwill	appear to tw	inkleif seen		Reason :- Sensitivity of eye is higher for yell	low					
	from free s	pace (say mo	on).			colour as compare to violet colour.						
	Reason :- Ar	n air bubble :	inside water	behave like		(1) A (2) B (3) C (4) D	-					
	a convergent	lens.			22.	Assertion : The images formed by total intern reflections are much brighter than those formed	nal Ibv					
	(1) A	(2) B	(3) C	(4) D		mirrors or lenses.	. Бу					
14.	Assertion :	- A beam of	white light	when passed		Reason : There is no loss of intensity in tot	al					
	through a he	ollow prism,	cannot give	e spectrum.		internal reflection.						
	Reason :- Be	ecause refrac	tive index c	of air inside	0.00	(1) A (2) B (3) C (4) D						
	and outside	the prism is s	same, so no re	efraction and	23.	change when red light is replaced by blue light.						
	hence no dev	viation will	take place.			Reason : The focal length of lens does not deper	nds					
	(1) A	(2) B	(3) C	(4) D		an colaur of light used.						
15.	Assertion :-	- The twinkli	ng of stars : of the earth	is due to the		(1) A (2) B (3) C (4) D						
	fluctuates.			s autospitere	24.	Assertion: By roughening the surface of a gla sheet its transparency can be reduced	iss					
	Reason :- I	n cold count	ries, the pł	nenomenon of		Reason : Glass sheet with rough surface absorbs						
	looming (i.e	e ship appears	s in the sky)	takes place,		more light. [AIIMS 200)5]					
	because ref	ractive inde	ex of air dec	creases with	05	(1) A (2) B (3) C (4) D						
	height.	(O) -		(D) =	25.	Assertion : Diamond glitters brilliantly.	151					
	(1) A	(2) B	(3) C	(4) D		Reason : Diamond does not absorb sunlight.						
16.	Assertion :	- Critical a	ngle is max	imum for red		(1) A (2) B (3) C (4) D						
	COTOUL TIL MAI	er-arr syster		TIGHC.	26.	Assertion : The resolving power of a telesco	pe					
	Boscon I - D	econo cina	$\frac{1}{2}$ and $\frac{1}{2}$	(rofrontino		is more if the diameter of the objective lens is more	re.					
	NedSON D	ecause sino	$\sim^{-}\mu^{-}\mu^{-}\mu^{-}\mu^{-}\mu^{-}\mu^{-}\mu^{-}\mu$	(IEIIaccive		Reason : Objective lens of large diameter colleg	cts					
	index of red	colour) is m	inimum for vi	sible light.		more light. (1) A (2) B (3) C (4) D						
	(1) A	(2) B	(3) C	(4) D	27	Assertion:- In optical fibre, the diameter of t	the					
17.	Assertion	:- The minir	num distanc	e between a		core is kent small [ATTMS 200	161					
	real object	and its real	image formed	d by a convex		Boom. This maller diameter of the core organ	.01					
	lens is 4f.					that the film should have insident and a more that	1922					
	Reason :- C	onvex mirro	r and concav	ve lens form		the emitting and a manifest of the second angle more th	udil					
	a virtual an	d erect image	e tor all pos	itions of the		the critical angle required for total interr	ıa⊥					
			(2) C			$\begin{array}{c} \text{reflection.} \\ (1) \mathbb{P} \\ \end{array} $						
	(L) A	(Z) B	(3) ((4) D		(1) A (2) B (3) C (4) D						

Ε

- 28. Assertion :- A thick lens show more chromatic abberration comparision to thin lens. [AIIMS 2012]
 Reason :- Thick lens behave as many thin lenses.
 (1) A (2) B (3) C (4) D
- 29. Assertion :- The focal length of objective lens in telescope is much more than that of eye piece. Reason :- Telescope has high resolving power due to large focal length. [AIIMS 2012] (1) A (2) B (3) C (4) D

ANSWER KEY

EXERCISE - II

Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	1	4	2	3	4	2	1	2	3	1	2	1	2	4	2
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	3	1	4	2	1	1	2	2	3	3	4	1	2	4	3
Que.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans.	4	4	3	2	1	3	3	2	1	4	1	4	2	1	2
Que.	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	2	1	3	4	2	2	4	4	2	1	4	4	2	3	3
Que.	61	62	63	64	65	66	67	68	69	70	71				
Ans.	4	3	2	1	3	2	3	2	4	2	2				

ANSWER KEY

EXERCISE - II

Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	1	2	1	3	4	2	3	2	3	2	2	3	3	4	1
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	2	1	2	1	2	3	3	1	4	2	2	4	1	1	1
Que.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans.	3	2	4	1	3	2	3	2	1	3	1	4	2	1	2
Que.	46	47	48	49	50	51	52	53							
Ans.	2	4	2	3	1	2	4	3							

ANSWER KEY EXERCISE														SE -	
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	1	1	4	4	4	2	1	2	1	2	1	1	4	1	2
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	
Ans.	1	2	1	2	3	2	1	4	1	2	2	1	1	3	